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Outline

• Brief Review of Core Ideas
• Purpose/Scope of Phase Two Assessment
• Study Overview and Metrics
• Summary of Key Results
• Plans for Phase Three
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Concept Overview:  Core Ideas

Performance 
Database

Conformance 
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and Dynamic 
Re-planning

Explore Visual Clearance 
Delivery Mechanisms

feasibility

Feasibility of TFM 
Constraints, Coordination

Time-Based Trajectories

memory

dynamic re-
planning

User interfaces to 
automation
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Enhanced
Surface/
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Surface
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Automated
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Context, Purpose and Scope for Phase Two
• Goals:

– Begin to quantify benefits of 
concept elements

– Establish technical 
feasibility of core concept 
functions/elements

– Develop relationships useful 
for Phase Three evaluation 
in ACES

• Approach:
– Local Experiments studying 

nominal behavior
– Exercise specific benefit 

mechanisms in isolation
– Compare models of concept 

against models of baseline
– Develop environment for 

testing concept algorithms

Benefits Models

Technical
Feasibility Models

Technology Capabilities 
Models

Assume Concept Can Do X
Perfectly with Perfect Information…

Can an Algorithm Actually Do X with Perfect 
Information?

Increasing
fidelity

Impact of Uncertainty?

Can Sensors and Data Sources Provide Information 
at the Required Rate and Accuracy?

Primary 
Phase Two 
Focus
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Self-Evaluation Methodology

Abstract Airport Models
and Heuristics

Surface Control
Behavior

Traffic Demand
Modeling

Generic Traffic Models
(e.g., assumed distributions)

Specific Airport Models 
and Constraints

Historically-Derived 
Traffic Distributions

Future Airport
Models

Scaled/Future
Traffic Demand

basic functionality and trend evaluation

baseline benefits (2002)

future benefits (2022)
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• Time-Based Scheduling Experiments
– Capture spatial aspects via time
– Focus on runway scheduling and sequencing
– Assume routings feasible

• Physics-Based Modeling
– Model aircraft movement
– Model physical constraints
– Employ CD&R

Phase Two Study Overview

Runway
Allocation

Pushback
Scheduling

Surface Simulation (RASEN)

Trajectory
Planning Algorithms

Surface/TFM 
Interactions

Configuration 
Change Efficiency

Next 
departure 
waiting in 
queue 

Departure 
taking off 

Aircraft 
waiting to 
cross 

Landing 
aircraft 
on 
runway 

Aircraft 
taxiing to 
inboard 
runway 

Departures 
inboard 

Arrivals on 
outboard 
runway 

To gates 

Runway
Crossing
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Phase Two Benefit Mechanisms and Metrics

• Time-Based Models/Experiments

• Physics-Based Models

Runway
Allocation Pushback

Scheduling

Surface
TFM 

Interactions

Configuration 
Change 

Efficiency

Flow synchronization 
Relaxed mapping

Departure delays 
Runway throughput
Workload

Increased 
controllability

Reduced queuing
Runway throughput
Environmental Impact

Increased coordination
Explicit planning

Maintain runway throughput
Taxi and airborne delays

Increased controllability 
and predictability

Constraint compliance
En route spacing

Benefit 
Mechanism:

Metrics:

Runway
Crossing

Flow synchronization, 
explicit planning

Taxi delays (efficiency)
Environmental Impact (emissions)
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Phase Two Surface Modeling Description

Number of ramp 
areas and handoff 
spots – typical 
transit times

∆t (ramp,spot)

Number of 
arrival fixes 
and typical 
transit times

Number of 
departure fixes 

and typical 
transit times

∆t (fix,runway)

∆t (spot, runway)

∆t (runway,fix)

Number of 
runways and 

physical 
layout 

Usage of 
runways:

Arrivals
Departures

Mixed

Departure fix to 
runway mapping

Arrival fix to 
runway mapping

Baseline 
(solid)

Concept 
(dashed)

Modeling concept impactsBasic Modeling Features

A

B

C

D

natural
FCFS 
order

ability to 
adjust 
order

Efficiency of use of 
mixed runways
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Normalizing Schedule Rates
• Purpose:  Establish gate pushback rates consistent with airport 

“size” that lead to different levels of saturation
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Average 
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three-runway 
airports ranges 
from 1.7 to 3.25, 
depending on 
whether runways 
are single-use (D) 
or mixed-use (M)

Saturation level 

1-2 Departure Runway Airports

3 Departure Runway Airports
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Runway Allocation Model:  Approach
• Baseline:

– Runway assignment:  Static departure 
fix to runway mapping

– Runway scheduling:  First come, first 
served (FCFS)

• Concept:
– Runway assignment/scheduling:  

Heuristic algorithm putting flight on 
earliest available runway

– Assumption:  Flights can depart from 
any runway to reach any fix (e.g., 4D 
de-confliction in terminal airspace)
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Runway Allocation Example – Mismatched Baseline
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Runway Allocation Example – Improved Balancing
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Runway Allocation Results – 2 Runway Airport
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Runway Allocation:  Airport Class Summaries
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Pushback Scheduling Model:  Approach
• Provide planner with an estimate 

of earliest time to reach runway
• Model forward in time to estimate 

queuing for each aircraft
• Add queuing time (minus buffer) 

to scheduled pushback time
• “Execute” flights with errors 

injected between planner and 
actual values
– Pushback time
– Ramp taxi time
– Handoff at spot
– Taxi time to runway (queue)

push

spot

reach 
queue
begin 
takeoff 
roll

Planned Execution

modeled 
distribution
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Pushback Scheduling Model

• Results:

N/AN/A7.983668YYYN/ABaseline (FCFS)

71%7.672.633152YYY3Concept 5 

71%7.672.443130YYN3Concept 4

71%7.672.193048YNN3Concept 3

71%7.672.533070NNN3Concept 2

93%8.571.072859NNN0Concept 1 

% 
Controlled 

Flights

Average 
Pushback 
Shift (min)
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Queue 
Time 
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Total 
Engine 

On 
Time 
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Taxi Tim
e 

Error

D
elay A

t 
Spot 

Pushback 
Error

B
uffer

(m
in)Model

With perfect information, concept leads to a 
savings of ~7 minutes in queuing time per flight
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Pushback Scheduling Model:  Case Study

• Focus on ramp control and pushback policies 
related to the number of flights in queue

F16842ABC1525 

F18842ABC1471 

F19842ABC1410 

F46836ABC1406 
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F311836ABC1429 

F19836ABC1431 

F29836ABC1547 

F110836ABC1507 

F111836ABC1491 

Filed 
Departure 
Fix

Minimum 
Time to 
Reach 
Merge 
(min)

File
d 
Out 
(Z)

Flight ID

F1 F2 F3

F4

5 minute 
separation 

required 2 minute 
separation 

Merge point 
(spot) 

Time to 
reach spot

Runway 
queue 
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Pushback Scheduling Model (2)

• Comparison of “Current World” 
Pushback Heuristics

0.6 (5)25.9 (56)0944Z14,949Keep 2 Flights Active

2.7 (13)10.2 (28)0921Z11,040Keep 4 Flights Active

6.5 (19)4.1 (19)0917Z11,023Keep 6 Flights Active

7.5 (26)1.6 (14)0917Z10,734Keep 7 Flights 
Active

8.4 (29)0.8 (9)0917Z10,963Keep 8 Flights Active

9.10.20917Z11,136Keep 9 Flights Active

9.3 (29)0 (0)0917Z11,203Baseline (Push 
Immediate)

Expected (Max) 
Time In Queue 
Once Reaching 

Merge Point (min)

Expected (Max) 
Per-Flight Delay 

at Gate Once 
Ready (min)

Expected 
Time All 
Flights 

Departed

Expected 
Cost
($)

Heuristic
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Pushback Scheduling Model (3)

• Improving on Current World Heuristics:

3.8 (15)4.6 (10)0917Z9,498X=5, Y=8 Rule + 
Re-sequencing

5.6 (19)3.5 (20)0917Z10,343X=5, Y=8 Rule

6.5 (24)2.5 (18)0917Z10,535X=6, Y=8 Rule

7.5 (26)1.6 (14)0917Z10,734Keep 7 Flights 
Active

9.3 (29)0 (0)0917Z11,203Baseline (Push 
Immediate)

Expected (Max) Time 
In Queue Once 

Reaching Merge Point 
(min)

Expected (Max) 
Per-Flight Delay 

at Gate Once 
Ready (min)

Expected 
Time All 
Flights 

Departed

Expected 
Cost
($)

Heuristic 

• Push flights in the order in which they become available to push.  
• Push a flight immediately if there are fewer than X aircraft currently taxiing to its runway.
• Do not push a flight if there are Y aircraft currently taxiing to its runway (Y>X).  
• If the number of active flights for that runway is greater than X but less than Y, make the

decision based on an expected monetary value calculation.
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Configuration Change Efficiency Model

• Approach:  Define “repositioning” delay as a 
function of aircraft state at the time of change

go-around with 
probability p1

at change

Repositioning Delay Function

Aircraft States

Baseline:  purely reactive
response

Concept:  use forecast to 
anticipate change

What is the potential 
savings?
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Configuration Change Model: Uncertainty Impact (1)

• Sensitivity to early wind shift 
• Relative to “no configuration change”
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Configuration Change Model: Uncertainty Impact (2)

• Sensitivity to early wind shift 
• Relative to baseline, reactive policy
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Configuration Change Model: Uncertainty Impact (3)

• Sensitivity to late wind shift 
• Relative to “no configuration change” 
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actual change time, tc

early latepredicted
change time, tĉ
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Configuration Change Model:  Summary Results
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Configuration Change Model:  CDF-Decisions

• Use CDF as basis for assigning flights to “new” 
runways
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EDCT Compliance Model:  Description

• Approach:
– Planner gets “estimate” of pushback time and surface transit 

time to reach each runway
– Automation capabilities reflected through max “advance” and 

max “delay” parameters
– Vary percentage of flights with controlled off times
– Airline “lead” time reflected through taxi urgency, defines 

controlled departure time

• Metrics:
– Degree of compliance with controlled off time
– Departure delay for uncontrolled flights
– Runway system throughput

(Unimpeded taxi duration)

(EDCT – Pushback Time)
Taxi urgency factor =
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EDCT Compliance Model:  Results

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-2

0

2

4

6

8

10

12

Taxi urgency factor

A
ve

ra
ge

 c
om

pl
ia

nc
e 

er
ro

r (
m

in
)

maxAdvance = 10min
maxDelay = 15min 

As expected, a reduction in 
compliance error occurs with 
less taxi urgency and fewer 
controlled flights

Compliance error decreases 
with decreasing taxi urgency

Increasing 
percentage 
of controlled 
flights

1/

(Unimpeded taxi duration)

(EDCT – Pushback Time)
Taxi urgency factor =



10-11 February 2004 NASA VAMS TIM #4
29

EDCT Compliance – Sensitivity to Wind Shift

• Plan for wind shift at time tc, look at behavior 
when forecast is in error
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Runway Crossing Models

• Purpose:  Assess ability for concept to reduce 
taxi delays

• Physically model:
– Landing
– Takeoff
– Taxiing

• Study Sensitivity to:
– Number of crossings necessary
– Use of each runway
– Offset between parallel flows
– Inter-arrival spacing
– Traffic mix
– Crossing policy

Mixed-Use 
Runways

Flow
offset

Perimeter
taxiway

Crossings
required

Departures Inboard – Arrivals Outboard

All Arrivals

Arrival
spacing
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Single Runway Crossing Model
• Arrivals Inboard

– Cross whenever large 
enough gap exists

• Departures Inboard
– Interleave Crossings and 

Departures
– Cross in Waves

• Model concept effect by 
modifying communication 
and response times:

Next 
departure 
waiting in 
queue

Departure 
taking off

Aircraft 
waiting to 
cross

Landing
aircraft on 
runway

Aircraft 
taxiing to 
inboard 
runway

Departures inboard

Arrivals on 
outboard runway

To gates

02Concept

106Baseline (2002)

Engine 
Spool (sec)

Clearance 
Time (sec)Model Case
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Runway Crossing Model Results:  Single Crossing
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Runway Crossing :  Crossing Policy Comparison

• Departures on the Inboard Runway
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Runway Crossing Behavior:  Multiple Crossings

• Additional runways at EWR modeled
• Emulate crossings required for landing on CSPR
• Also investigate impact of perimeter taxiway

Perimeter 
taxiway added

22R
22X

22L 22XX

Flow 
offset

Arrival 
spacing

Runway Usage
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Runway Crossing Behavior:  Results (1a)

• Departures inboard on 22R
• Increasing use of outboard arrival runways
• Variation in inter-arrival separation
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Runway Crossing Behavior:  Results (1b)

• Departures inboard on 22R
• Examine variation with runway exit speed
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Runway Crossing Behavior:  Results(1c)

• Examine Departure Delay for Flights on 
Inboard Runway (22R) and Runway (22L)

• Variation with inter-arrival spacing
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Runway Crossing Behavior:  Results (2a)

• Arrivals on all runways
• Variation in inter-arrival spacing
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Runway Crossing Behavior:  Results (2b)

• Arrivals on all runways
• Variation in inter-arrival spacing
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Runway Crossing Behavior:  Results (2c)

• Arrivals on all runways
• Variation in inter-arrival spacing
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Runway Crossing Behavior:  Results (2d)

• Arrivals on all runways
• Variation with runway exit speed
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Runway Crossing Behavior:  Results (2e)

• Arrivals on all runways
• Variation with runway exit speed
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Runway Crossing Behavior:  Illustrative Examples

Departures 22R, Arrivals 22L, 22X, 22XX Arrivals on all runways



10-11 February 2004 NASA VAMS TIM #4
44

Runway Crossing Behavior:  Impact of Planning

• Arrivals on 22L, 22R
• Planner finds shortest-time path for each flight
• Sequentially constrained network search
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Technical Feasibility Experiments
• Approach:

– Physical modeling of 
aircraft movements

– Algorithms for resource 
allocation

• Goals:
– Establish feasibility of 

conflict-free planning
– Assess benefits of 

explicit planning of 
conflict-free routes

– Assess benefits of 
flexible terminal area 
routing

Gates/Ramp 
Areas

FixesDefault 
mapping

Concept 
flexible 
mapping 
options

Runway 
11/29 not 
used in 
this study

Arrival flight on 
runway 22L

Arrival flight 
waiting to 
cross 22R

Departing 
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Flights queued for 
departure on 22R

Arrival flights taxiing 
to gates
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Technical Feasibility:  Scheduling Model
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Approach:  Planning at EWR

• Arrival and Departure Demand – based on 
5/17/2002, 1 hour of data

• Scenario 1
– Arrivals at runway (1x = 29)
– Departures at gates (1x = 13)

• Scenario 2
– Arrivals at runway (1x = 29)
– Departures at gates (1x = 26)

• Resource allocation schemes:
– Baseline (FCFS)
– Shortest-time Paths, Static Fix-Runway Mapping
– Shortest-Time Paths, Flexible Fix-Runway Mapping

Sequentially 
constrained 
network
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Results:  Planning at EWR (1x traffic)

• Impact of Explicit Planning – Assuming Plan 
Executed Perfectly
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Results:  Planning at EWR (1x traffic)

• Effect of Imperfect Execution – highlights the 
need for Clearance Manager, Dynamic Re-planner
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Results:  Planning at EWR (2x traffic)

• Impact of Explicit Planning – Assuming Plan 
Executed Perfectly
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Planning:  Results at EWR (2x traffic)
• Movie 1

– Scenario 2(2x) ,No planning
• Movie 2

– Scenario 2 (2x), Planning
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Results:  Planning at EWR (2x traffic)

• Surface Efficiency variation – Scenario 2
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Technical Feasibility:  Experiment Results Summary
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Conclusions

• Viable approaches to evaluating concept benefits 
have been derived

• Initial estimates of benefits and performance 
trends look promising

• Self-assessment has provided insight into 
concept functions and requirements 

• Opportunities for blending with other concepts in 
other domains have been identified
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Transferability to ACES
• Flexible Runway Assignment

– Effective scaling of the airport departure rate

• Pushback Scheduling
– Add logic to the Airport Traffic Management agent in ACES

• Configuration Change Efficiency
– Define transient throughput loss relationship as a function of 

demand level at the time of configuration change, varies based on 
“A” to “B” configurations.

• EDCT Compliance
– Integrate “advance/delay” logic into ACES to allow flights to be

moved forward and backward in the runway schedule. 
– Issue:  does any “downstream” ACES agent care?

• Runway Crossing Efficiency
– Scale the taxi delay for different airport crossing geometries as a 

function of the runway assigned to each arrival flight. 
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Next Steps – Challenges
• Phase Three Evaluation with ACES

– Continue to refine local relationships to shape input files and ACES 
agent behavior (per-airport)

– Patch together local scenarios to create NAS-wide cases for 
evaluation with ACES 

• Phase Three Technical Feasibility
– Real-Time Clearance Manager Function
– Dynamic Planner Function
– Departure Constraint Manager Function
– Conformance Monitor Function
– Explore sensitivity to uncertainty

• Phase Three Multi-Domain Evaluation
– Incorporate Wx Re-routing Algorithms
– Incorporate CSPR ideas from TACEC
– Begin to investigate en route merging algorithms

Also focus on user 
interface and 
demonstrate HITL 
interaction with 
automation


